Search results for "Theories of gravity"
showing 10 items of 16 documents
All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data
2019
We present results of an all-sky search for continuous gravitational waves (CWs), which can be produced by fast-spinning neutron stars with an asymmetry around their rotation axis, using data from the second observing run of the Advanced LIGO detectors. We employ three different semi-coherent methods ($\textit{FrequencyHough}$, $\textit{SkyHough}$, and $\textit{Time-Domain $\mathcal{F}$-statistic}$) to search in a gravitational-wave frequency band from 20 to 1922 Hz and a first frequency derivative from $-1\times10^{-8}$ to $2\times10^{-9}$ Hz/s. None of these searches has found clear evidence for a CW signal, so we present upper limits on the gravitational-wave strain amplitude $h_0$ (the …
All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run
2019
We present the results of a search for short-duration gravitational-wave transients in the data from the second observing run of Advanced LIGO and Advanced Virgo. We search for gravitational-wave transients with a duration of milliseconds to approximately one second in the 32-4096 Hz frequency band with minimal assumptions about the signal properties, thus targeting a wide variety of sources. We also perform a matched-filter search for gravitational-wave transients from cosmic string cusps for which the waveform is well-modeled. The unmodeled search detected gravitational waves from several binary black hole mergers which have been identified by previous analyses. No other significant event…
Violation of the equivalence principle from light scalar dark matter
2018
In this paper, we study the local observational consequences of a violation of the Einstein Equivalence Principle induced by models of light scalar Dark Matter (DM). We focus on two different models where the scalar field couples linearly or quadratically to the standard model of matter fields. For both these cases, we derive the solutions of the scalar field. We also derive from first principles the expressions for two types of observables: (i) the local comparison of two atomic sensors that are differently sensitive to the constants of Nature and (ii) the local differential acceleration between two test-masses with different compositions. For the linear coupling, we recover that the signa…
Dynamical environments of relativistic binaries: The phenomenon of resonance shifting
2019
In this article, we explore both numerically and analytically how the dynamical environments of mildly relativistic binaries evolve with increasing the general relativity factor $\gamma$ (the normalized inverse of the binary size measured in the units of the gravitational radius corresponding to the total mass of the system). Analytically, we reveal a phenomenon of the relativistic shifting of mean-motion resonances: on increasing $\gamma$, the resonances between the test particle and the central binary shift, due to the relativistic variation of the mean motions of the primary and secondary binaries and the relativistic advance of the tertiary's pericenter. To exhibit the circumbinary dyna…
The 1-loop effective potential for the Standard Model in curved spacetime
2018
The renormalisation group improved Standard Model effective potential in an arbitrary curved spacetime is computed to one loop order in perturbation theory. The loop corrections are computed in the ultraviolet limit, which makes them independent of the choice of the vacuum state and allows the derivation of the complete set of $\beta$-functions. The potential depends on the spacetime curvature through the direct non-minimal Higgs-curvature coupling, curvature contributions to the loop diagrams, and through the curvature dependence of the renormalisation scale. Together, these lead to significant curvature dependence, which needs to be taken into account in cosmological applications, which i…
Ricci-Based Gravity theories and their impact on Maxwell and nonlinear electromagnetic models
2019
Abstract We extend the correspondence between metric-affine Ricci-Based Gravity the- ories and General Relativity (GR) to the case in which the matter sector is represented by linear and nonlinear electromagnetic fields. This complements previous studies focused on fluids and scalar fields. We establish the general algorithm that relates the matter fields in the GR and RBG frames and consider some applications. In particular, we find that the so-called Eddington-inspired Born-Infeld gravity theory coupled to Maxwell electromag- netism is in direct correspondence with GR coupled to Born-Infeld electromagnetism. We comment on the potential phenomenological implications of this relation.
Efficient resummation of high post-Newtonian contributions to the binding energy
2021
A factorisation property of Feynman diagrams in the context the Effective Field Theory approach to the compact binary problem has been recently employed to efficiently determine the static sector of the potential at fifth post-Newtonian (5PN) order. We extend this procedure to the case of non-static diagrams and we use it to fix, by means of elementary algebraic manipulations, the value of more than one thousand diagrams at 5PN order, that is a substantial fraction of the diagrams needed to fully determine the dynamics at 5PN. This procedure addresses the redundancy problem that plagues the computation of the binding energy with respect to more "efficient" observables like the scattering an…
Hairy black-holes in shift-symmetric theories
2020
Scalar hair of black holes in theories with a shift symmetry are constrained by the no-hair theorem of Hui and Nicolis, assuming spherical symmetry, time-independence of the scalar field and asymptotic flatness. The most studied counterexample is a linear coupling of the scalar with the Gauss-Bonnet invariant. However, in this case the norm of the shift-symmetry current $J^2$ diverges at the horizon casting doubts on whether the solution is physically sound. We show that this is not an issue since $J^2$ is not a scalar quantity, since $J^\mu$ is not a diff-invariant current in the presence of Gauss-Bonnet. The same theory can be written in Horndeski form with a non-analytic function $G_5 \s…
What is a singular black hole beyond general relativity?
2017
Exploring the characterization of singular black hole spacetimes, we study the relation between energy density, curvature invariants, and geodesic completeness using a quadratic $f(R)$ gravity theory coupled to an anisotropic fluid. Working in a metric-affine approach, our models and solutions represent minimal extensions of General Relativity (GR) in the sense that they rapidly recover the usual Reissner-Nordstr\"{o}m solution from near the inner horizon outwards. The anisotropic fluid helps modify only the innermost geometry. Depending on the values and signs of two parameters on the gravitational and matter sectors, a breakdown of the correlations between the finiteness/divergence of the…
Correlation patterns from massive phonons in 1+1 dimensional acoustic black holes: A toy model
2018
Transverse excitations in analogue black holes induce a mass like term in the longitudinal mode equation. With a simple toy model we show that correlation functions display a rather rich structure characterized by groups of parallel peaks. For the most part the structure is completely different from that found in the massless case.